Rich club organization and intermodule communication in the cat connectome.
نویسندگان
چکیده
Macroscopic brain networks have been shown to display several properties of an efficient communication architecture. In light of global communication, the formation of a densely connected neural "rich club" of hubs is of particular interest, because brain hubs have been suggested to play a key role in enabling short communication pathways within neural networks. Here, analyzing the cat connectome as reconstructed from tract tracing data (Scannell et al., 1995), we provide several lines of evidence of an important role of the structural rich club to interlink functional domains. First, rich club hub nodes were found to be mostly present at the boundaries between functional communities and well represented among intermodule hubs, displaying a diverse connectivity profile. Second, rich club connections, linking nodes of the rich club, and feeder connections, linking non-rich club nodes to rich club nodes, were found to comprise 86% of the intermodule connections, whereas local connections between peripheral nodes mostly spanned between nodes of the same functional community. Third, almost 90% of all intermodule communication paths were found to follow a sequence or "path motif" that involved rich club or feeder edges and thus traversed a rich club node. Together, our findings provide evidence of the structural rich club to form a central infrastructure for intermodule communication in the brain.
منابع مشابه
Simulated rich club lesioning in brain networks: a scaffold for communication and integration?
Brain function depends on effective neural communication and integration across different domains. This exchange of information is facilitated by the “connectome”: the complex network of all neural elements and neural connections of an organism that provides the anatomical foundation for emerging functional dynamics. How the complex wiring of the connectome relates to the demands and constraint...
متن کاملThe rich club of the C. elegans neuronal connectome.
There is increasing interest in topological analysis of brain networks as complex systems, with researchers often using neuroimaging to represent the large-scale organization of nervous systems without precise cellular resolution. Here we used graph theory to investigate the neuronal connectome of the nematode worm Caenorhabditis elegans, which is defined anatomically at a cellular scale as 228...
متن کاملReduced rich-club connectivity is related to disability in primary progressive MS
OBJECTIVE To investigate whether the structural connectivity of the brain's rich-club organization is altered in patients with primary progressive MS and whether such changes to this fundamental network feature are associated with disability measures. METHODS We recruited 37 patients with primary progressive MS and 21 healthy controls for an observational cohort study. Structural connectomes ...
متن کاملRich-club organization of the human connectome.
The human brain is a complex network of interlinked regions. Recent studies have demonstrated the existence of a number of highly connected and highly central neocortical hub regions, regions that play a key role in global information integration between different parts of the network. The potential functional importance of these "brain hubs" is underscored by recent studies showing that distur...
متن کاملIndividual variability in the anatomical distribution of nodes participating in rich club structural networks
With recent advances in computational analyses of structural neuroimaging, it is possible to comprehensively map neural connectivity, i.e., the brain connectome. The architectural organization of the connectome is believed to play an important role in several biological processes. Central to the conformation of the connectome are connectivity hubs, which are likely to be organized in accordance...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 33 32 شماره
صفحات -
تاریخ انتشار 2013